skip to main content


Search for: All records

Creators/Authors contains: "Jolly, Arthur D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Laterally directed explosive eruptions are responsible for multiple fatalities over the past decade and are an increasingly important volcanology problem. To understand the energy dynamics for these events, we collected field-scale explosion data from nine acoustic sensors surrounding a tiltable cannon as part of an exploratory experimental design. For each cannon discharge, the blast direction was varied systematically at 0°, 12°, and 24° from vertical, capturing acoustic wavefield directivity related to the tilt angle. While each event was similar in energy discharge potential, the resulting acoustic signal features were variable event-to-event, producing non-repetitious waveforms and spectra. Systematic features were observed in a subset of individual events for vertical and lateral discharges. For vertical discharges, the acoustic energy had a uniform radiation pattern. The lateral discharges showed an asymmetric radiation pattern with higher frequencies in the direction of the blast and depletion of those frequencies behind the cannon. Results suggest that, in natural volcanic systems, near-field blast directionality may be elucidated from acoustic sensors in absence of visual data, with implications for volcano monitoring and hazard assessment. Graphical Abstract 
    more » « less
  2. null (Ed.)
    Infrasound data are routinely used to detect and locate volcanic and other explosions, using both arrays and single sensor networks. However, at local distances (<15 km) topography often complicates acoustic propagation, resulting in inaccurate acoustic travel times leading to biased source locations when assuming straight-line propagation. Here we present a new method, termed Reverse Time Migration-Finite-Difference Time Domain (RTM-FDTD), that integrates numerical modeling into the standard RTM back-projection process. Travel time information is computed across the entire potential source grid via FDTD modeling to incorporate the effects of topography. The waveforms are then back-projected and stacked at each grid point, with the stack maximum corresponding to the likely source. We apply our method to three volcanoes with different network configurations, source-receiver distances, and topography. At Yasur Volcano, Vanuatu, RTM-FDTD locates explosions within ∼20 m of the source and differentiates between multiple vents. RTM-FDTD produces a more accurate location for the two Yasur subcraters than standard RTM and doubles the number of detected events. At Sakurajima Volcano, Japan, RTM-FDTD locates the source within 50 m of the active vent despite notable topographic blocking. The RTM-FDTD location is similar to that from the Time Reversal Mirror method, but is more computationally efficient. Lastly, at Shishaldin Volcano, Alaska, RTM and RTM-FDTD both produce realistic source locations (<50 m) for ground-coupled airwaves recorded on a four-station seismic network. We show that RTM is an effective method to detect and locate infrasonic sources across a variety of scenarios, and by integrating numerical modeling, RTM-FDTD produces more accurate source locations and increases the detection capability. 
    more » « less
  3. Abstract

    Acoustic source inversions estimate the mass flow rate of volcanic explosions or yield of chemical explosions and provide insight into potential source directionality. However, the limitations of applying these methods to complex sources and their ability to resolve a stable solution have not been investigated in detail. We perform synthetic infrasound waveform inversions that use 3‐D Green’s functions for a variety of idealized and realistic deployment scenarios using both a flat plane and Yasur volcano, Vanuatu as examples. We investigate the ability of various scenarios to retrieve the input source functions and relative amplitudes for monopole and multipole (monopole and dipole) inversions. Infrasound waveform inversions appear to be a robust method to quantify mass flow rates from simple sources (monopole) using deployments of infrasound sensors placed around a source, but care should be taken when analyzing and interpreting results from more complex acoustic sources (multipole) that have significant directional components. In the examples we consider the solution is stable for monopole inversions with a signal‐to‐noise ratio greater than five and the dipole component is small. For most scenarios investigated, the vertical dipole component of the multipole explosion source is poorly constrained and can impact the ability to recover the other source term components. Because multipole inversions are ill‐posed for many deployments, a low residual does not necessarily mean the proper source vector has been recovered. Synthetic studies can help investigate the limitations and place bounds on information that may be missing using monopole and multipole inversions for potentially directional sources.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Infrasound (low frequency sound waves) can be used to monitor and characterize volcanic eruptions. However, infrasound sensors are usually placed on the ground, thus providing a limited sampling of the acoustic radiation pattern that can bias source size estimates. We present observations of explosive eruptions from a novel uncrewed aircraft system (UAS)‐based infrasound sensor platform that was strategically hovered near the active vents of Stromboli volcano, Italy. We captured eruption infrasound from short‐duration explosions and jetting events. While potential vertical directionality was inconclusive for the short‐duration explosion, we find that jetting events exhibit vertical sound directionality that was observed with a UAS close to vertical. This directionality would not have been observed using only traditional deployments of ground‐based infrasound sensors, but is consistent with jet noise theory. This proof‐of‐concept study provides unique information that can improve our ability to characterize and quantify the directionality of volcanic eruptions and their associated hazards.

     
    more » « less
  6. SUMMARY

    Yasur volcano, Vanuatu is a continuously active open-vent basaltic-andesite stratocone with persistent and long-lived eruptive activity. We present results from a seismo-acoustic field experiment at Yasur, providing locally dense broad-band seismic and infrasonic network coverage from 2016 July 27 to August 3. We corroborate our seismo-acoustic observations with coincident video data from cameras deployed at the crater and on an unoccupied aircraft system (UAS). The waveforms contain a profusion of signals reflecting Yasur’s rapidly occurring and persistent explosive activity. The typical infrasonic signature of Yasur explosions is a classic short-duration and often asymmetric explosion waveform characterized by a sharp compressive onset and wideband frequency content. The dominant seismic signals are numerous repetitive very-long-period (VLP) signals with periods of ∼2–10 s. The VLP seismic events are ‘high-rate’, reoccurring near-continuously throughout the data set with short interevent times (∼20–60 s). We observe variability in the synchronization of seismic VLP and acoustic sources. Explosion events clearly delineated by infrasonic waveforms are underlain by seismic VLPs. However, strong seismic VLPs also occur with only a weak infrasonic expression. Multiplet analysis of the seismic VLPs reveals a systematic progression in the seismo-acoustic source decoupling. The same dominant seismic VLP multiplet occurs with and without surficial explosions and infrasound, and these transitions occur over a timescale of a few days during our field campaign. We subsequently employ template matching, stacking, and full-waveform inversion to image the source mechanism of the dominant VLP multiplet. Inversion of the dominant VLP multiplet stack points to a composite source consisting of either a dual-crack (plus forces) or pipe-crack (plus forces) mechanism. The derived mechanisms correspond to a point-source directly beneath the summit vents with centroid depths in the range ∼900–1000 m below topography. All mechanisms suggest a northeast trending crack dipping relatively shallowly to the northwest and indicate a VLP source centroid and mechanism controlled by a stable structural geologic feature beneath Yasur. We interpret the results in the framework of gas slug ascent through the conduit responsible for Yasur explosions. The VLP mechanism and timing with infrasound (when present) are explained by a shallow-buffered top-down model in which slug ascent is relatively aseismic until reaching the base of a shallow section. Slug disruption in this shallow zone triggers a pressure disturbance that propagates downward and couples at the conduit base (VLP centroid). If the shallow section is open, an explosion propagates to the surface, producing infrasound. In the case of (the same multiplet) VLPs occurring without surficial explosions and weak or no infrasound, the decoupling of the dominant VLPs at ∼900–1000 m depth from surficial explosions and infrasound strongly indicates buffering of the terminal slug ascent. This buffering could be achieved by a variety of conditions at or directly beneath the vents, such as a high-viscosity layer of crystal-rich magma, a debris cap from backfill, a foam layer, or a combination of these. The dominant VLP at Yasur captured by our experiment has a source depth and mechanism separated from surface processes and is stable over time.

     
    more » « less